1. 试样的表面状态
被评定试样的表面状态直接影响测试结果的可靠性。用机械方法制备的金相磨面,由于抛光时表层微量的范性变形,引起加工硬化,或者磨面表层由于形成氧化膜,因此所测得的显微硬度值较电解抛光磨面测得的显微硬度值高。试样最好采用电解抛光,经适度浸蚀后立即测定显微硬度。
2. 选择正确的加载部位
压痕过分与晶界接近,或者延至晶界以外,那么测量结果会受到晶界或相邻第二相影响;如被测晶粒薄,压痕陷入下部晶粒,也将产生同样的影响。为了获得正确的显微硬度值,规定压痕位置距晶界至少一个压痕对角线长度,晶粒厚度至少10倍于压痕深度。为此,在选择测量对象时应取较大截面的晶粒,因为较小截面的晶粒其厚度有可能是较薄。
3. 测量压痕尺度时压痕象的调焦
在光学显微镜下所测得压痕对角线值与成像条件有关。无损检测资源网孔径光栏减小,基体与压痕的衬度提高,压痕边缘渐趋清晰。一般认为:最佳的孔径光栏位置是使压痕的四个角变成黑暗,而四个棱边清晰。对同一组测量数据,为获得一致的成像条件,应使孔径光栏保持相同数值。
4.试验负荷
为保证测量的准确度,试验负荷在原则上应尽可能大,且压痕大小必须与晶粒大小成一定比例。特别在测定软基体上硬质点的硬度时,被测质点截面直径必须四倍于压痕对角线长,否则硬质点可能被压通,使基体性能影响测量数据。此外在测定脆性质点时,高负荷可能出现“压碎”现象。角上有裂纹的压痕表明负荷已超出材料的断裂强度,因而获得的硬度值是错误的,这时需调整负荷重新测量。
5.压痕的弹性回复
对金刚石压头施一定负荷的力压入材料表面,表面将留下一个压痕,当负荷去除后,压痕将因金属的弹性回复而稍微缩小。弹性回复是金属的一种性质,它与金属的种类有关,而与产生压痕的荷重无关。就是说不管荷重如何,压痕大小如何,弹性回复几乎是一个定值。因此,当荷重小时,压痕很小,而压痕因弹性回复而收缩的比例就比较大,根据回复后压痕尺寸求得的显微硬度值则比较高。这种现象的存在,使得不同荷重下测得的硬度值缺乏正确的比较标准,因此有必要建立显微硬度值的比较标准。
|